
NXApp, Winter 1993 (Volume 1, Issue 1).
Copyright ã1993 by NeXT Computer, Inc.    All Rights Reserved.

Spreading the Wealth: DO and PDO

written by Dennis Gentry

The Portable Distributed Objects system (PDO) is a powerful subset of
NEXTSTEP technology. It's an extension of Distributed Objects (DO) and
is part of the NEXTSTEP development environment. Distributed Objects
and Portable Distributed Objects enable developers to efficiently
construct, operate, and maintain complex client/server applications in a
heterogenous computing environment.

What happens when more people need to use your application than you had
initially planned,
so that you need to split the processing load across several computers? Or, you
want to use
NEXTSTEP to build the user interface to a database application, but the database
server runs on an HPâ server? Or maybe your company needs you to build a
groupware application that lets people work together interactively?
What to do? Why, use Distributed Objects and Portable Distributed Objects, of
course!

See the Distributed Objects chapter of the NEXTSTEP 3.2 General Reference for more details on
both DO and PDO.

SHARE AND SHARE ALIKE
The Distributed Object system provides a way to share objects among multiple

client and server applications running on separate computers on a network. The
server application is a collection
of objects that are intended for use by cooperating client applications. The server
publishes some
of its objects to make them available to client applications on the same computer
and other computers on the network. To the clients, the published objects are
messaged as if they were in the same process as the rest of the client. This
transparent messaging is much cleaner than previous remote procedure call (RPC)
mechanisms. DO preserves the power and benefits of object-oriented
programming, even in a distributed application environment.
The Portable Distributed Object system extends the power of Distributed Objects
to non-NEXTSTEP computers. It allows a core section of the NEXTSTEP
environment to run on other systems. Objects in the PDO environment can
communicate over networks with other Portable Distributed Objects and
NEXTSTEP objects. The PDO system includes all the parts of NEXTSTEP necessary
to run distributed object servers plus some additional common functionality, like
NEXTSTEP's file stream functions and portable BuildServer.

GRIEF-FREE CLIENT/SERVER DEVELOPMENT
Compared to other popular RPCs like Sun RPC and Mach RPC, DO and PDO have a
number of advantages that make developing with them nearly transparent. They
allow you to cleanly design client/server application architectures without the
hassles that come with other RPC mechanisms.

Dynamic and simple
One major advantage of DO over previous RPCs is that DO is dynamic. Other RPC
systems require you to specify the exact procedures that you'll call remotely.
Likewise, they require you to indicate the exact types and sizes of the arguments
and return values. When you add a procedure to your RPC project's list of
remotely callable procedures you must recompile all affected code on the server
and the client. In contrast, DO allows you to send messages to objects that don't
exist or haven't even been defined. If a new Distributed Object server implements
and exports an object that conforms to some protocol, previously running clients
that use that protocol can begin using the new object immediately.
Another advantage is that DO frees you from many memory management
concerns. You can't completely ignore memory management because there's no

automatic garbage collection in NEXTSTEP. However, if you're just sending and
receiving parameters and return values, you generally don't need to explicitly
deal with memory as you would with other RPC systems.

Divide and conquer
With some RPC systems, you must always be (painfully) aware that you're writing
an RPC program before you start. If your existing single-machine code was not
written with RPC in mind and you later need to scale up your application as your
business grows, you'll have to rewrite and extend your program to distribute it
across multiple machines. If you're concerned about decent performance with
your RPC application, you have even more work to do.
In contrast, you can often take a non-distributed NEXTSTEP application and make
it distributed with little trouble. The NEXTSTEP application should already be
composed of objects, and distributing your application might involve merely
identifying the relevant objects and moving them to a server program.
DO and PDO also benefit from the advantages of object-oriented programming
over procedural programming. Because your application is made up of objects,
and because of the encapsulation properties of objects, your application will
probably be made up of neatly self-contained computational units from the start.
These can often be relatively easily distributed across multiple machines because
of their clean interfaces to other objects, and they should have reasonable
performance in a distributed environment due to locality of reference.

Accessible servers
PDO allows non-NEXTSTEP operating systems to take advantage of Distributed
Objects, so that the power and benefits of object-oriented programming and
NEXTSTEP are available in a heterogenous distributed environment. PDO allows
greater reusability of custom objects developed under NEXTSTEP and doesn't
require additional software on NEXTSTEP clients or servers. It lets you vend and
use objects remotely as either clients or servers, even on machines that aren't
running NEXTSTEP. As a result, you can take advantage of NEXTSTEP's user
interface capabilities while using existing server resources.
To find out more about the advantages of object-oriented programming, see ªAn Informal
Approach to Object-Oriented Designº in this issue.

CHOOSING BETWEEN DO AND PDO

Ordinarily, most programmers would probably choose to use DO instead of PDO
because DO runs under the full NEXTSTEP environment and is therefore more
powerful, not to mention simpler to use. For example, the full Application Kitä is
available under NEXTSTEP, but not under PDO. Also, some PDO operating systems
don't have the functionality to support preemptive threads that you may need to
build your server. (The Distributed Object Event Loop comes with PDO to work
around this limitation).
However, in some situations you might consider using Portable Distributed
Objects rather than Distributed Objects to build a server for your application:

A central machine must service many requests.
Your applications have occasional compute- or memory-intensive requests, or
need a fail-safe or easily recoverable server.
A non-NEXTSTEP machine is already set up to parcel out a centralized data
feed.
You'd like to take advantage of your heterogenous network to perform tasks in
parallel.

If you don't have one or more of these requirements, you might find a NEXTSTEP-
based DO server more convenient than a PDO server. If your site outgrows your
NEXTSTEP server, it's relatively easy to move your server to a Portable Distributed
Objects platform.

DISTRIBUTING OBJECTS
Applications take advantage of Distributed Objects by sending ordinary Objective
C messages to objects in remote applications. The program that implements and
makes an object available for remote use is called the server, and a program that
takes advantage of that object by sending it messages is a client. A single
application can easily play both the client and server roles.
To set up servers and clients you need to add a few additional lines of code to
each cooperating application to specify which applications and objects are
involved. In most cases, Distributed Objects and Portable Distributed Objects
understand and neatly handle most data types as arguments or return values,
including structures, pointers, strings, and, most importantly, objects (ids).

The server
To make an object distributed and therefore available to other applications, a
server program must first vend the object. Here's a simple application that shares
a central stock price data feed.
id myServer = [[PriceServer alloc] init];
id myConnection = [NXConnection registerRoot: myServer withName:
"stockPriceServer"];

[myConnection run]; // does not return

The NXConnection class provides other, more commonly used methods than run that allow the
waiting to take place asynchronously. More on this in Multithreaded servers.º

This code instantiates a price server, then registers that server with the network
name server as stockPriceServer. The last line loops to wait for remote
messages. In each application that will participate in Distributed Objects, you
need to include the two lines of code.

The client
To use an object that has been vended, a client looks up the desired server object
and stores a handle to it in a local NXProxy object. For example, this line stores
the handle in theServer:
id theServer = [NXConnection connectToName:"stockPriceServer"];

If this line of code returns a non-nil value to theServer, the client may then refer
to the stock price server on the server machine as if it were implemented in the
client, with only a few exceptions. This is the heart of Distributed Objects. For
example:
printf("IBM is currently at %d\n", [theServer priceFor:"IBM"]);

Passing objects
Probably the most important data type that clients and servers can pass to each
other is the id. In the example above, the server explicitly vends and the client
looks up only one serving object. After that, either the client or the server may
pass ids of objects that each wishes to implicitly vend as arguments or return
values .

The few non-transparent aspects of Distributed Objects are described in ªAvoiding Pitfalls.º

As long as the client is prepared to handle remote messages via some form of
NXConnection run message and vends an object to the server in this way, the
server may then use objects in the client. Thus, the client and server switch roles.
More commonly, the original server would make additional objects available that
the client would find useful, without additional setup code overhead.
For example, suppose the stock price server should return more attributes than
just the price of the stock. A good way to do this is to have the server return a
Stock object that the client can then query for the stock attributes. The client
code might look like this:
id myStock = [theServer stockFor:"IBM"];
struct tm today = gmtime();
printf("IBM is currently at %d\n", [myStock priceAtTime:today]);
printf("IBM's last dividend was %d\n", [myStock dividend]);

Executing the first line implicitly vends a Stock object from the server, accessible
through the
id mystock. Each of the printf commands remotely invokes the stock object in
the server, even though the client refers to myStock just like any local object.

Multithreaded servers
In the first example server above, the last line of the program ([myConnection
run]) never returnsÐit just loops while waiting for incoming remote messages. In
most applications a server must do more than simply service remote messages.
For example, a real stock price server might also update a database from a real-
time data feed. To allow a server to continue with other tasks while it also waits
for messages to objects it has vended, use multiple threads. The DO system
makes this very easy for Application Kit-based programs with the NXConnection
method runFromAppkit.

Although for most applications you use Portable Distributed Objects in exactly the same way as
Distributed Objects, you can't currently write multithreaded PDO servers. This is because there
are no tools for threads in the HP operating system.

For example, the code from the server shown above might be enhanced to look

like this:
id myServer = [[PriceServer alloc] init];
id myConnection = [NXConnection registerRoot: myServer withName:
"stockPriceServer"];

[myConnection runFromAppkit]; // creates a new thread that waits

/* Code to receive data feed goes here and is executed in the original thread.
*/

The runFromAppkit method creates a new thread whose sole purpose is to loop,
waiting for remote method invocations. runFromAppkit is also aware that the
Application Kit isn't thread-safe, so it waits to dispatch remote methods until your
application is between Application Kit events. If your server doesn't use the
Application Kit and requires finer-grained parallelism, other methods let you
create threads that dispatch remote methods without waiting for the Application
Kit. These methods are documented in the NEXTSTEP General Reference book.

AVOIDING PITFALLS
If your application is simple, like the example shown above, you'll find that using
Distributed Objects and Portable Distributed Objects is pretty transparent.
However, if you're building a more complex, robust application there are a few
issues that you must be aware of.

Returning self has new semantics
In Objective C it's common to return the id self to indicate success of a method.
This has reasonable performance for local objects, but returning self to a remote
caller actually vends the object to which self refers, with all the overhead
involved. Unused object vending is not excessively expensive, but for maximum
efficiency objects should return a more appropriate type than self.
For example, to indicate success or failure, an object should return a scalar type
such as YES or NO instead of self or nil. If the server doesn't need to return a
status at all, it can return void and the method call can use the oneway keyword.
This results in a very fast one-way asynchronous call, meaning that the caller
doesn't even have to wait for the remote method to finish.

Network or remote machine failure

Make sure that cooperating programs deal gracefully with the failure of their
clients or servers. The exact action an application should take depends on the
nature of the cooperating programs, but DO provides a reasonably simple
mechanism that allows programs to notice the loss of a cooperating program.
To be notified of the loss of a cooperating program, an object needs to request
notification and implement a senderIsInvalid: method. When the object is
asynchronously notified via this method, it must determine which remote objects
have become inaccessible and decide what to do about it.

Non-transparent data types
A few data types can't be passed and returned transparently: unions, void
pointers, and pointers inside structures other than ids and char *s. The basic
problem with these types is that in general the compiler can't know the size of the
data being referenced, so it can't pass the data to a remote program in a
meaningful way. Another problem is that the computer on which the remote
object is running might deal with the data differently; for example, it might use
different byte-ordering. The result is that it's not possible to pass data types
whose layout can't be known.

In a future version DO will manage the memory for strings like it currently does for other data
types.

There are at least two ways to deal with this limitation: Type-cast pointers, or
enclose complex structures in objects and then transmit the objects. You can
type-cast pointers to non-recursive structures to work around the void pointer
problem, and you can encapsulate more complex structures in objects. However,
if you find yourself often transmitting objects around, you might consider
redesigning your application to lessen network traffic.
To transmit object copies instead of vending them, use the new bycopy Objective
C keyword in the parameter list. Be sure to conform to the NXTransport protocol,
which requires that you write three simple methods:
encodeRemotelyFor:freeAfterEncoding:isBycopy:, encodeUsing:, and
decodeUsing:. The first of these is actually implemented in the Object class. You
typically override it with a simple two-line method that uses the isByCopy
parameter to decide whether to send a copy of the object or not. If a copy is to be
sent, the other two methods cooperate to send the data necessary to create a

copy of the object at its new location: Locally encodeUsing: packs up the unique
data of the object, and on the remote computer decodeUsing: unpacks it to
instantiate a copy.

Memory management of strings
The current version of DO manages the memory for storing pointers to chars
(strings) differently than it does for pointers to other data types. Normally, pointer
data is automatically freed when the server returns; however, in the current DO,
the server must explicitly free strings when it has finished with them. If you don't
free strings in your servers, the memory for those strings is lost.

Performance, deadlock avoidance, and transaction management
For many Distributed Object applications you don't need to worry about
optimizing performance, avoiding deadlock, or managing atomic transactions.
However, for large distributed applications these issues can become very
important. For example, with a larger network and more complex needs, the
latent problems you might have in existing DO applications can become more
apparent. This isn't all bad, because if problems are apparent you have a better
chance of fixing them.
Dealing with these issues properly is beyond the scope of this article. However,
consider the inherent complexity involved in writing distributed applications
before beginning work on a large distributed application, rather than as an
afterthought. For example, to deal with deadlock, be careful to reason about the
behavior of cooperating and competing servers to make sure they can never
mutually rely on the same resources at the same time in order to make progress.
Likewise, to deal with managing atomic transactions, use a two-phase commit
protocol.     

Realities of servers and networks
When you plan to put compute-intensive tasks on a server, keep perspective on
scaling issues.
For example, no current PDO server has the aggregate computing power of 500 or
even 10 Pentium-based NEXTSTEP machines. Therefore, if you might eventually
decentralize your application, you shouldn't plan to saturate a single central
serverÐrather, consider distributing compute-intensive tasks across multiple
server machines if possible. The trade-off, of course, is that it can be more difficult
and time-consuming to correctly implement your computation for parallel

processing.
If you do decide to distribute a task across several computers, keep in mind that
the network has a finite bandwidth that can be saturated by a few high-
performance machines sending remote messages extensively. Design your
application to take advantage of Distributed Objects' facility for moving objects
from one machine to another. This can reduce the amount of remote messaging
that might otherwise occur.

CONCLUSION
DO and PDO offer you excellent tools for developing client/server applications.
Their design also gives you the flexibility to expand applications as NEXTSTEP and
PDO become available on more platforms. We hope you'll find they're just what
you need to make great applications.

Dennis Gentry is a member of the Developer Support Team. You can reach him by e-mail at
Dennis_Gentry@next.com.

References
Andleigh, Prabhat, and Michael Gretzinger. Distributed Object-Oriented Data-Systems Design. Englewood
Cliffs, NJ: Prentice Hall, 1992. ISBN 0-13-174913-7.

Elmasri, Ramez, and Shamkant B. Navathe. Fundamentals of Database Systems. Redwood City, CA:
Benjamin/Cummings, 1994. ISBN 0-8053-1748-1.

NeXT Computer, Inc. NEXTSTEP 3.2 General Reference, vol. II. Palo Alto, CA: Addison Wesley, 1992. ISBN
0-201-62221-1.

NeXT Computer, Inc. NEXTSTEP 3.2 Release Notes. Redwood City, CA: NeXT Computer, 1993.

NeXT Computer, Inc. Object-Oriented Programming and the Objective C Language. Palo Alto, CA: Addison
Wesley, 1993.

NeXT Computer, Inc. Portable Distributed Objects 1.0 Release Notes. Redwood City, CA: NeXT Computer,
1993.

__
Next Article NeXTanswer #1504 An Informal Approach to Object-Oriented
Design

Table of contents
http://www.next.com/HotNews/Journal/NXapp/Winter1994/ContentsWinter1994.html

